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Weather prediction is essential to the daily life of human beings. Current numerical weather prediction
models such as the Global Forecast System (GFS) are still subject to substantial forecast biases and rarely
consider the impact of atmospheric aerosol, despite the consensus that aerosol is one of the most impor-
tant sources of uncertainty in the climate system. Here we demonstrate that atmospheric aerosol is one
of the important drivers biasing daily temperature prediction. By comparing observations and the GFS
prediction, we find that the monthly-averaged bias in the 24-h temperature forecast varies
between ± 1.5 �C in regions influenced by atmospheric aerosol. The biases depend on the properties of
aerosol, the underlying land surface, and aerosol–cloud interactions over oceans. It is also revealed that
forecast errors are rapidly magnified over time in regions featuring high aerosol loadings. Our study pro-
vides direct ‘‘observational” evidence of aerosol’s impacts on daily weather forecast, and bridges the gaps
between the weather forecast and climate science regarding the understanding of the impact of atmo-
spheric aerosol.
� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Numerical weather prediction (NWP) models are run every day
at major operational weather forecast centers; they are essential
for everyday life and have become a paramount tool for quantita-
tive weather prediction worldwide [1–4]. The basic concept of
NWP is to solve a complex set of mathematical equations that
express the atmospheric dynamics and conservation laws includ-
ing mass, momentum and energy [5]. In NWP models, a set of par-
tial differential equations is integrated forward to obtain future
atmospheric states, primarily using supercomputers nowadays.
Over the past half-century, NWP models have witnessed substan-
tial progresses leading to increasing weather forecast skill [6,7].
These advances could be attributed to the steady accumulation of
scientific knowledge, particularly the understandings of key pro-
cesses along with their numerical parameterization and solution,
and to fast technology development in both data acquisition and
data assimilation [2,7].

Atmospheric aerosol, consisting of light-absorbing components
like black carbon and scattering components like sulfate, is origi-
nated from primary anthropogenic and natural emissions as well
as formed via secondary chemical transformations. Aerosol poses
perturbations on weather and climate directly through scattering
and absorbing radiation and indirectly by modifying microphysical
properties of clouds, thereby exerting a cooling or heating effect on
the planet [8]. Case studies have shown that aerosol is one of the
important factors that may influence weather forecast [9,10]. For
instance, anthropogenic aerosol may reduce the amount of sun-
light reaching the ground and thus tend to cause local cooling in
densely populated regions such as China and India [11]. Biomass-
burning aerosol containing a large amount of light-absorbing black
carbon decreases solar irradiance reaching the Earth’s surface
while heating the surrounding air, thus modifying the atmospheric
temperature stratification [12–14]. Saharan and Asian dust aerosol
probably perturbs radiation balance or serves as ice nuclei, and
hence plays an important role in temperature stratification and
precipitation processes [15,16].

In climate models, aerosol has already been well acknowledged
as one of the largest sources of uncertainty [17–21]. However, the
great importance of the seamless integrated chemistry-
meteorology modeling has been less considered in the NWP
application than the climate community traditionally [9,22,23],
and most current operational NWP models rarely resolve the
aerosol processes explicitly [1,9]. In general NWP applications,

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.scib.2021.05.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dingaj@nju.edu.cn
https://doi.org/10.1016/j.scib.2021.05.009
http://www.sciencedirect.com/science/journal/20959273
http://www.elsevier.com/locate/scib


X. Huang et al. Science Bulletin 66 (2021) 1917–1924
climatological aerosol with coarse spatiotemporal resolutions is
usually applied for a low computational complexity. However,
unlike greenhouse gases, aerosol is a climate forcer featuring great
spatial heterogeneity and erratic fluctuation, and hence climato-
logical approximation is not capable of well representing time-
varying impacts of aerosol on meteorology. In addition to the
expensive computational cost of integrated chemistry-
meteorology modeling, the main causes for less sophisticated
treatment of aerosol also include that operational NWP models
have gained a much better performance owning to the rapid pro-
gress in data assimilation, which are considered to potentially fill
the gaps of some missing processes like aerosol [1,22,24]. Here,
by conducting an observation minus forecast (OMF) analysis with
3-year daily National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) data during 2016–2018, we found
significant bias and expanding forecast errors in the daily forecast
of lower-tropospheric air temperature in regions influenced by
anthropogenic or natural aerosol, indicating that aerosol is an
important but neglected driver biasing daily weather prediction.
2. Materials and methods

2.1. Radiosonde observations

The Integrated Global Radiosonde Archive (IGRA) is a radio-
sonde dataset of the National Climatic Data Center (NCDC), and
consists of radiosonde and pilot balloon observations at over
2700 globally distributed stations [25]. The earliest data date back
to 1905, and recent data become available in near real time. This
dataset is well quality-assured to a high standard using quality
assurance algorithms that check for formatting problems, physi-
cally implausible values, internal inconsistencies among variables,
runs of values across soundings and levels, climatological outliers,
and temporal and vertical inconsistencies in air temperature.
Observations are available at standard and variable pressure levels,
fixed- and variable-height wind levels, and at the surface and tro-
popause. The mandatory pressure levels for the measurements are
1000, 925, 850, and 700 hPa for the lower troposphere.
2.2. Global forecast and analysis data

The NCEP operational GFS has applied at a fine resolution
of ~13 km since 2015, and the analysis and forecast product on a
0.25��0.25� global latitude–longitude grid is openly accessible.
The analysis uses myriad observations at specific locations on an
irregular grid to produce a representation of the atmospheric state
over the GFS model grid, which has included statistical measures of
both the variability of the measurements and of the atmosphere
itself [24,25]. Since the year of 2012, the global data assimilation
system (GDAS) has transitioned to a 3D-Var-based ensemble-
variational hybrid data-assimilation system. Existing studies have
shown that each data assimilation cycle in the GFS generally incor-
porates more than 25,000 radiosonde observations, which has
been indicated to most significantly impact the analysis accuracy,
particularly for air temperature [26]. By using the analysis as the
initial conditions, GFS physical forecast models then propagate
an atmospheric state forward in time. The global data assimilation
and forecasts are made four times daily at 0000, 0600, 1200 and
1800 UTC. Correspondingly, temperature forecast biases are
derived from forecast and analysis data four times per day during
2016–2018. On a daily basis, temperature forecast biases can be
analyzed in detail with other influencing factors like cloud cover
and aerosol. Monthly temperature forecast biases are then calcu-
lated from the daily forecast biases.
1918
2.3. Modeling the impact of aerosol on meteorology

To quantitatively understand the impact of atmospheric aerosol
on air temperature in highly polluted regions, we conduct
chemistry-meteorology online-coupled modelling using the
Weather Research and Forecasting coupled with chemistry model
(WRF-Chem). The model has been widely used to evaluate radia-
tive impacts of aerosol, and the model settings were detailed in
our previous studies [27,28]. In the present study, the model
domain covered East Asia and its surrounding areas due to severe
aerosol pollution in China and India. The simulation is conducted
for the entire month of June 2018. The initial and boundary condi-
tions of the meteorological fields are driven by the 6-h NCEP global
final analysis data. Both natural and anthropogenic emissions are
included. Anthropogenic emissions are obtained from the Emission
Database for Global Atmospheric Research (EDGAR) database [29],
which provides the emission intensity of main gaseous and partic-
ulate pollutants like sulfur dioxides, nitrogen oxides, volatile
organic compounds as well as carbonaceous and inorganic aerosol.
Given that dust emissions are highly dependent on meteorological
conditions, the emission rate of dust aerosol is calculated online
based on the GOCART emission scheme [30]. Key parameterization
options include the Yonsei University scheme to parameterize
boundary layer processes, the Noah land surface scheme for
describing land–atmosphere interactions, the Lin microphysics
scheme with the Grell cumulus parameterization for reproducing
the cloud and precipitation processes, and the RRTMG short- and
long-wave radiation scheme. In the WRF-Chem simulations, the
aerosol compositions include sulfate, nitrate, ammonium, black
carbon, organic matter and mineral dust. Carbon-Bond photo-
chemical mechanism combined with the Model for Simulating
Aerosol Interactions and Chemistry (MOSAIC) aerosol module is
applied; thus, both primary emissions and secondary formation
via chemical transformation are considered in the aerosol simula-
tion. The prognostic aerosol is coupled with both short- and long-
wave radiation transfer modules and microphysics modules. Two
parallel numerical experiments are performed: one with aerosol
perturbations on meteorology and the other without.
2.4. Other observations and dataset

The Monitoring Atmospheric Composition and Climate and
megacity Zoom for the Environment (MACCity) emission dataset
is applied for demonstrating anthropogenic emissions, and emis-
sion intensity from biomass burning is obtained from the Global
Fire Emissions Database (GFEDv4) [31]. The aerosol optical depth
(AOD) is provided by Multi-angle Imaging SpectroRadiometer
(MISR) product [32]. The vertical profiles of aerosol and cloud are
derived from the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) aerosol product [33]. Land cover
and snow information are derived fromModerate Resolution Imag-
ing Spectroradiometer (MODIS) land cover (MCD12C1) and snow
retrievals (MYD10) [34,35]. The shortwave radiation flux is
obtained from Clouds and the Earth’s Radiant Energy System
(CERES) surface data product [36].
3. Results

3.1. Global atmospheric aerosol and temperature forecast bias

The OMF analysis provides unique insights into the potential
influences from those processes that have not been considered or
well presented in the models, particularly the time-varied influ-
ences [13,37–39]. Using the daily GDAS analysis and radiosonde
data as ‘‘observations”, respectively, in comparison with NCEP
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GFS forecast, we calculate the 3-year averaged global distribution
of OMF biases in predicted 24-h lower-tropospheric air tempera-
ture (Tbias), as shown Fig. 1a. Here we chose 24-h products for
the OMF analysis because the 24-h forecast significantly influences
human daily life and features smaller forecast error from various
physical processes in the NWP than medium-range forecasts. We
mainly focused on 925 hPa as this layer usually represents the
upper boundary layer and the base of clouds, where air pollutants
may influence the boundary dynamics and precipitation
[10,13,14]. It shows that, despite great advances in NWP models
and high-performance computing as well as comprehensive
observing systems, current NWP models are still subject to notable
forecast biases. A well-organized global distribution of strong bias
could be clearly identified from region to region. For example,
strong negative temperature biases exist in central-southern
Africa, Amazon, northern India and eastern China, and positive
biases are over the southern Oceans in the high latitudes of the
Southern Hemisphere, the northern Atlantic, Siberia and eastern
United States (US) [11,21,40]. From a global perspective, the posi-
tive and negative biases (with monthly means up to ±1.5 �C) are
almost balanced with each other, resulting in an overall small glo-
bal mean bias of –0.03 �C (Fig. 1a).

To further explore the impact of aerosol, the probability density
distributions of the daily temperature forecast bias under different
AOD conditions are analyzed. As clearly shown in Fig. S1 (online),
the probability of |Tbias| less than 0.5 ℃ is 96.1% under clean condi-
tions, which is substantially higher than the corresponding proba-
bility value of 76.6% under polluted conditions. Atmospheric
aerosol is an obvious factor that biases the temperature forecast.
Although model uncertainties in other physical processes might
be an important contributor to temperature forecast bias under
Fig. 1. Global distribution of air temperature forecast bias and aerosol. (a) 925 hPa obse
compared with the GDAS analysis (GDAS-GFS, shaded contour) and radiosonde observati
is labeled on the color bar. (b) The global distribution of the averaged MISR aerosol opt
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specific conditions, overall, there exists much more significant bias
in temperature forecast under higher aerosol loading across the
globe. Such a tendency also holds true over spatial scales. The spa-
tial pattern of OMF biases coincides with the overall distribution of
aerosol (Fig. 1b), which can be well explained by various types of
aerosol as a dominant contributor to the AOD, such as sea salt,
mineral dust, and carbonaceous aerosol from biomass burning or
fossil fuel combustions in different regions, as shown in Fig. S2 (on-
line) [41]. The forecast biases in temperature exist mainly in the
lower-middle troposphere, with signals gradually decreasing with
increasing altitude (see Fig. S1 online). Fig. 1a also shows that the
radiosonde–GFS bias has a consistent spatial distribution but
stronger signals in comparison with GDAS–GFS bias (Figs. 1 and
S3a online). Such kind of difference mainly exists below 850 hPa
with more impact from aerosol (Fig. S3b, c online). Hence, even
with a large number of assimilated observations, the model could
only overcome about half of the bias for the analysis/reanalysis
data in the lower troposphere. It is noteworthy that when data
assimilation was only applied for the initial conditions, it was less
effective in reducing the potential impacts of aerosol in operational
weather forecasting.

3.2. Air temperature forecast bias in typical polluted regions

The maximum and minimum monthly averaged OMF Tbias in
Figs. 2 and S4 (online) show distinct differences between regions.
Most of the positive biases exist in spring and winter. The boreal
Eurasian continent (i.e., from Europe to Siberia) features a particu-
larly strong positive bias (with a regional average of up to 0.7 �C),
followed by the positive biases of the coastal eastern US and the
southern Oceans (Figs. 2a, c, d and S5 online). For the minimum
rvation minus forecast (OMF) air temperature bias (Tbias) for the GFS 24-h forecast
ons (radiosonde-GFS, circles) during 2016–2018. The global mean forecast bias (GM)
ical depth (AOD) during 2016–2018.



Fig. 2. Regional difference in positive and negative monthly-averaged air-temperature bias. (a, b) Maximum and minimum monthly-mean OMF Tbias (GDAS-GFS) in 24-h air
temperature forecast at 925 hPa. (c) Vertical profiles of 24-h OMF Tbias (GDAS-GFS) for typical regions subject to different forcing of aerosol, including Amazon, southern and
northern Africa (S. and N. Africa), northern India (N. India), eastern China (E. China), northern Eurasia (N. Eurasia), eastern US (E. US) and southern Ocean (S. Ocean). These
regions are defined in Fig. S5. (d) Seasonal variations of regional-averaged OMF Tbias (GDAS-GFS) in typical regions.
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monthly averaged OMF Tbias, central-southern Africa and south-
eastern Atlantic, and Amazon exhibit stronger negative biases
(up to –1.5 �C), followed by northern India and eastern China
(Figs. 2b and S5 online).

The vertical and seasonal distributions of air temperature bias
averaged over the main regions suggest distinct roles of different
types of aerosol in modifying air temperature, as demonstrated
in Figs. 2c, d and S2 (online). Fig. 3 presents more detailed evidence
from the OMF analysis and CALIPSO retrievals regarding the impact
of aerosol on the air-temperature forecast bias for Asia. Consistent
with the previous study [27], the well-organized and strong nega-
tive OMF value (Fig. 3a) is quite clear in northern India and eastern
China in June, the month with minimum negative OMF values
(Fig. 2d). The OMF Tbias generally coincides with the horizontal dis-
tribution of AOD contributed by anthropogenic emissions [41–43]
and also show an overall inverse relation vertically (Fig. 3c). Simu-
lations based on regional chemistry-meteorology online coupled
model also indicate that aerosol could lead to a ~1 �C decrease
of near-surface air temperature in emission-intensive areas like
eastern China and northern India (Fig. 3b). However, coastal east-
ern US is characterized by significantly high positive OMF values
correlated to aerosol loadings in March, when biomass burning is
active in both Central America and Southeastern US [44]. The fire
smoke containing light-absorbing aerosol may result in the oppo-
site effect on the lower-tropospheric air temperature over the land
in southeastern US and the downwind Atlantic Ocean (Fig. S6
online).

In addition to the two typical regions, the impacts of aerosol on
the lower tropospheric temperature forecast bias in the NWP are
also evident in some other regions in Fig. 2. For example, a com-
bined effect of smoke over snow cover may well explain the signif-
icantly high positive OMF values in boreal Eurasian continent in
April [45,46] (Fig. S7 online). The warming due to both short-
and long-wave radiative heating of dust aerosol over regions
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downwind both the Sahara and Taklamakan deserts (Fig. S8 online)
and dimming effect of smoke aerosol from intensive biomass burn-
ing and a possible interaction with clouds in Africa (Fig. S9 online)
in typical seasons, which have been extensively studied [43,47–
49], could be well identified by the OMF analysis. For the Amazon
region, a minimum negative OMF bias in August and September
(Fig. 2) indicates a possible impact from smoke-induced cloud con-
densation nuclei (CCN) increment, even though the averaged AOD
is not as high as other polluted regions [50] (Figs. 1 and 2).

Although our results are generally consistent with previous
works on aerosol radiative forcing and their impact on regional
climate in these regions, it should be noted that the OMF analysis
here is derived from numerical weather forecast rather than
simulations with explicit descriptions of aerosol and meteorology-
chemistry coupling. These results demonstrate that the OMF
analysis, which is conducted for different regions and different
seasons using a unified method, can provide unique insights into
the impact from the missing processes (e.g., aerosol) on weather
forecast and regional climate from a global perspective. However,
more detailed and quantitative understandings of how different
aerosols and other plausible factors, e.g., soil type and soil moisture,
surface vegetation types, surface evapotranspiration, snow and ice
cover, urban heat island configurations, and other boundary layer
processes, influence the lower-tropospheric air temperature in
different regions still require further modeling efforts.

3.3. Impacts of cloud cover and the underlying surface

As mentioned above, many factors, including cloud and the
underlying surface, could influence the bias of weather prediction
[51]. Here we further explore the impact from aerosol in compar-
ison with cloud cover and surface albedo based on the OMF analy-
sis. Because the impact of aerosol on air temperature, from both
direct and indirect effects, all depends on solar radiation, aerosol



Fig. 3. Temperature response to aerosol in highly-polluted regions of India and China. (a) Spatial distribution of OMF Tbias between GFS 24-h forecast and GDAS analysis at
925 hPa in Asia in June. (b) Simulated aerosol’s impact on 925-hPa temperature in June based on WRF-Chem model. (c) Vertical profiles of temperature forecast bias, aerosol
extinction and cloud fraction retrieved by CALIPSO in northern India (NI) and eastern China (EC).
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optical depth (AOD) times shortwave radiation (SW) is used as a
proxy (denoted as AOD � SW) to investigate the relationship of
aerosol and air temperature biases as well as other relevant pro-
cesses, e.g., the underlying surface and clouds, that may influence
the aerosol–radiation interaction [6,19]. Fig. 4a suggests that the
air-temperature bias over land is generally larger over a darker sur-
face with small surface albedo, and vice versa (Fig. S10 online).
These results indicate the hybrid and interlinked effects of aerosol
and land-use/land cover change, which have usually been studied
separately [52] and may have been misunderstood in some cases.
For instance, previous studies usually attributed the OMF or obser-
vation minus reanalysis (OMR) bias to land-surface process, e.g.,
urbanization, alone [39,50].

Over the ocean, a warm bias exists mainly over regions with a
strong wind speed (WS greater than 15 m s�1) (Fig. 4c), which
causes intensive emission of wind-blow sea-salt aerosol [41]
(Fig. S1 online). Fig. 4c also shows that the air temperature bias
from strong wind speed slightly decreases with an increasing
AOD � SW proxy, indicating a change of regimes from aerosol–
cloud interaction to aerosol–radiation interaction under increasing
concentration of sea-salt aerosol [20,53]. In addition, Fig. 4c also
reveals a slightly negative temperature bias with large error bars
for low clouds over the ocean. The scatter plot of bias in the column
cloud water below 500 hPa versus the air temperature bias clearly
demonstrates a strong relationship for cloud top below 850 hPa,
whereby an increase in cloud water is associated with a significant
decrease in air temperature (Fig. 4d). In fact, the enhanced cloud
water mainly exists over regions downwind of intensive biomass
burning smoke like southeastern Atlantic and subtropical Asia
1921
[38,54], where the smoke-induced semi-direct effects enhance
low cloud and dim the lower tropospheric temperature (Figs. 2b
and S9d online). Some studies have revealed that when the absorb-
ing aerosol from biomass burning resides above a low cloud deck
over southeastern Atlantic, the absorption of sunlight by the aero-
sol causes a reduction in cloud-top entrainment, leading to a thick-
ening of the cloud deck and also a negative semi-direct forcing
[18,48,49]. In contrast, the cloud bias over land shows a weaker
relation with air temperature bias while compared with that over
the ocean (Fig. 4b). Temperature forecast biases under clear-sky
and all-sky conditions over land show a comparable magnitude
(Fig. S11 online), indicating a more important role of aerosol–radi-
ation interaction over the continent. Contrary to this, temperature
forecast biases tend to be amplified by the presence of clouds.

3.4. Bias magnification with prediction time

The above analysis based on 24-h NWP modeling results clearly
demonstrates the impact of aerosol in modifying daily air temper-
ature forecast over many regions across the globe. Nowadays, peo-
ple usually pay attention to weather prediction with a time
window for 3–5 d and even longer. Fig. 5 shows that the bias in
air temperature prediction under high aerosol conditions is statis-
tically greater than those under clean circumstance. Fast expanded
forecast errors exist in the northern India and eastern China with
severe haze pollution from anthropogenic fossil fuel combustion
sources [14,28] (Fig. 5b), and in Africa and Amazon with intensive
biomass burning [48,49] (Fig. 5c–e). A significantly higher and
increasing root mean square error with forecast time is



Fig. 4. Relationship of air temperature bias Tbias with main factors over land and sea. (a) 925-hPa OMF temperature bias (GDAS-GFS) as a function of the aerosol-radiation
proxy (i.e., the aerosol optical depth multiplied by short-wave radiation (AOD � SW)) over land. Liner fittings for data with different albedo ɑ. (b) OMF bias (GDAS-GFS) in
column cloud water below 500 hPa as a function of OMF temperature bias at 925 hPa over land, color-coded with AOD � SW. (c) Same as (a) but for the ocean. The brown and
blue box-whisker plots show data with a wind speed above 15 m s�1 and a cloud top below 850 hPa, respectively. (d) Same as (b) but for data over the ocean, color coded with
the cloud-top pressure.

Fig. 5. Increasing biases with prediction time in high aerosol regions. 925-hPa OMF air temperature biases of 1-d to 5-d prediction in different regions. (a) Clean land area
with AOD � SW less than 0.1, (b) regions with significantly high anthropogenic pollution including eastern China and northern India in June (E. China and N. India), (c) regions
substantially influenced by the smoke from biomass burning, including southern Africa (S. Africa) and the Amazon in August, (d) eastern US (E. US) in February, and (e)
northern Eurasia (N. Eurasia) in April. (f) Time series of root mean square error (RMSE) of air temperature forecast in the GFS in comparison to the GDAS in the same regions as
(a-e). Note: we show the forecast biases at 24-h intervals of the prediction time. The grey dots in each column correspond to the same prediction time in all subplots.
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demonstrated to be more substantial in regions with higher aero-
sol loading than regions with lower aerosol loadings (Fig. 5f). Such
increasing bias in the predicted air temperature with increased
forecast time was also observed globally over the main land and
ocean areas (Fig. S12 online). This implies that aerosol not only
biases air temperature, but also adds more uncertainty and causes
poor predictability in weather forecasts in regions with high aero-
sol loadings. In such regions, the characterization of aerosol pro-
cesses, either anthropogenic haze pollution or naturally emitted
aerosol, is a key challenge for NWP models to improve the skills
of multi-day weather prediction. It is also worth noting that
regions with high aerosol loadings are usually characterized by
dense populations (e.g., Asian countries) or fragile ecosystem/agri-
cultural fields (e.g., arid–semi-arid regions in Africa and central
Eurasia). The weaker predictability of weather forecasts in these
regions is expected to exert more socioeconomic impacts on every-
day life.

With respect to predictability, Fig. 5f suggests a generally linear
change of biases with forecast time and Fig. S12 (online) shows
that in addition to an increasing amplitude, the spatial pattern of
air temperature forecast bias was less changed with forecast time.
These indicate that the forecast bias is mainly caused by aerosol–
radiation interaction locally and the forecast error is less propa-
gated to downwind regions. This is good news for a practical
improvement of numerical weather prediction. Since that the fore-
cast bias generally has good correlation with aerosol under a speci-
fic underlying surface or cloud regime, the application of new
technologies, like artificial intelligence [55], may help reduce the
bias and improve the overall skills of the weather forecasting.
4. Discussion

In this study, we demonstrate that the current state-of-the-art
NWP models are still subject to large discrepancies in forecasting
tropospheric air temperature in many regions. According to the
OMF analysis, available observations and model simulations, we
found that the bias in air temperature forecast in many regions
might be linked with different types of aerosol, despite a revolution
of NWP models due to improved knowledge, fast development of
high-performance computers, and massive observations available
for data assimilation. The biases in air temperature forecast are dif-
ferent in vertical profiles and also in seasonal variations for various
kinds of aerosol over different underlying surface. In general, the
dimming effect of aerosol occurs in regions with high aerosol load-
ing over land, e.g., significantly high anthropogenic aerosol in India
and China and heavy smoke and dust in Africa, or regions with
strong aerosol–cloud interactions, e.g., the smoky Amazon and
the biomass burning-enhanced low cloud in Southern Atlantic
Ocean. The warming effects of aerosol are more complex, espe-
cially in remote areas and oceans, where the effect of either the
aerosol–radiation interaction or aerosol–cloud interaction might
be an important contributor. The warming regions identified by
the OMF analysis include the eastern US (mainly influenced by bio-
mass burning), the boreal Eurasian continent (with smoke aerosol
over the snow surface in spring), the areas downwind of the Sahara
and Taklamakan deserts, and the southern oceans (linked with a
possible impact from the aerosol–cloud interaction of sea salt).
To minimize these biases, more measurements, including those
from radiosonde observations and satellite retrievals in the lower
troposphere, should be added in these regions. Considering air
temperature is a principle meteorological parameter, which influ-
ences advection, convection, boundary layer dynamics and cloud
formation [9,13], the aerosol-induced air temperature biases
should be very crucial for the prediction of other meteorological
parameters, e.g., precipitation and even circulations [13,56]. To
1923
improve the overall forecasting skills in different regions of the
world with respect to the influence of aerosol, new technologies
like deep learning are potentially promising means to reduce the
bias. However, the long-termly ultimate solution is to develop
and apply operational NWP models fully characterizing the physi-
cal and chemical processes of aerosol as well as the coupling of
detailed characterization of their spatiotemporal variations.
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