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HIGHLIGHTS

e A rapid increase in nighttime ozone near the surface is observed during the strong dust storm in March 2021.
o The synoptic system associated with the dust storm is also conducive to Stratosphere-Troposphere Exchange.
e Asian dust storm is often accompanied by surface ozone anomaly due to stratospheric ozone intrusion.
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As one of the largest dust source regions, China suffers from frequent dust storms in spring. During the super dust
storm in March 2021, a rapid increase in nocturnal surface ozone concentration was observed along with
elevated dust loading. Ground-based and satellite observations as well as reanalysis data of air quality and
meteorology are integrated to shed light on the ozone anomaly. It is indicated that cold fronts and cyclones are
conducive to both dust emissions and the downwards transport of stratospheric air, leading to simultaneously

soaring ozone and particle concentrations near the surface. Statistically, in the past few years, under the influ-
ence of specific synoptic weather accompanied with Stratosphere-Troposphere Exchange (STE), dust was
frequently uplifted to 8-12 km and the low-tropospheric ozone was elevated by approximately 6 ppb in northern
China during spring dust storms. This work reveals strong ozone intrusions associated with dust storms, which
have great impacts on atmospheric chemistry and regional climate.

1. Introduction

As an important component of atmospheric aerosols, mineral dust
accounts for more than half of the mass loading of global aerosols
(Textor et al., 2006; Zender et al., 2004). After emission, dust can
deteriorate local and regional air quality and exert an adverse impact on
public health (Duce et al., 1980; Eguchi et al., 2009; Lee et al., 2007;
Shiraiwa et al., 2017). Dust aerosols can also function as an external
source of nutrients and trace elements when depositing into the ocean,
affecting the ocean biogeochemistry cycle (Jickells et al., 2005; Maho-
wald et al., 2005; Ren et al., 2011). By interacting directly with radiation
and indirectly with clouds, dust aerosols could exert a substantial impact

on regional and global climate (Choobari et al., 2014). On the one hand,
dust aerosols can significantly influence cloud microphysics by serving
as cloud condensation nuclei or ice nuclei (Kaufman et al., 2005; Su
et al., 2008). On the other hand, aerosols play a key role in radiation
transfer and atmospheric temperature perturbation (X. Huang and Ding,
2021). As absorbing aerosols, dust has been proven to absorb and scatter
both short- and long-wave radiation, resulting in cooling near the sur-
face and warming in the upper layer (J. Huang et al., 2014; L. Liu et al.,
2016; W. Wang et al., 2013; Z. Wang et al., 2018). Such modifications in
temperature stratification would stabilize the boundary layer and
further suppress the diffusion of near-surface pollutants (Wang et al.,
2020; Yang et al., 2021).
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Dust storms mainly originate from arid and semi-arid desert regions
(Zhang et al., 2003). As one of the largest dust source regions across the
world, East Asia features frequent spring dust storms, which are related
to cold fronts and cyclones in spring (Husar et al., 2001; W. Li et al.,
2018; Qian et al., 2002; Sun and Zhao, 2008; L. Zhao & S. Zhao, 2006).
Asian dust mainly sources from the Taklimakan and Gobi Deserts in the
north and northwest of China (Choobari et al., 2014; Prospero et al.,
2002), and can be transported to southeast regions and even across the
Pacific Ocean (Husar et al., 2001; In and Park, 2002; Takemura et al.,
2002). Synoptic systems can significantly influence the vertical trans-
port and distribution of mineral particles. Tsai et al. (2008) indicated
that dust particles in the front of an upper level trough could be uplifted
into the free troposphere while dust particles behind the trough gener-
ally remained in the lower troposphere below 700 hPa. Several existing
studies have pointed out that the upward motion of air mass associated
with cyclones could uplift the dust particles to the upper troposphere
(Cuesta et al., 2015; M. Liu et al., 2003). The uplifted dust near the
source regions was transported downwind and then subsided to the
earth surface, causing particulate pollution in the downwind areas
especially eastern China (F. Wang et al., 2021; Wei et al., 2018). Dust
storms have various and wide-ranging negative impacts on society.
Through worsening air quality, dust storm events usually result in
increased rates of morbidity and mortality for cardiovascular and res-
piratory diseases (Aili and Kim Oanh, 2015; Goudarzi et al., 2017;
Khaniabadi et al., 2017). The adverse effects of dust storms on the
economy can also be severe. The accidents, cancellations, and delays in
road, rail, and air transportation systems due to dust storms lead to
substantial economic losses (AlKheder and AlKandari, 2020; Middleton
et al., 2019; Miri and Middleton, 2022). Moreover, dust storms also
cause damage to agriculture by weakening soil stability and severely
affecting photosynthesis (Al-Hemoud et al., 2017; Mohamed and Gehan,
2012). The electricity and solar power generation are seriously affected
as well (Gholami et al., 2018; Pahlavanravi et al., 2012), with buildings
and infrastructures destructed by strong winds (Miri et al., 2009).

In the mid- and high-latitudes of the northern hemisphere,
Stratosphere-Troposphere Exchange (STE) occurs frequently in spring
due to specific synoptic systems (Lelieveld and Dentener, 2000; Liang
et al., 2011; Skerlak et al., 2014). As an important dynamic process, it
changes the oxidative capacity of the troposphere and potentially affects
the climate system (Holton et al., 1995). Previous works have shown
that the occurrence of STE is usually associated with cyclones, fronts, the
Brewer-Dobson circulation, tropopause folding, Rossby wave breaking,
moist convection, and cut-off lows ( Dimitris Akritidis et al., 2018;
Holton et al., 1995; Krasauskas et al., 2021; D. Li et al., 2015; Salby and
Callaghan, 2006). Mid-latitude cyclones enable the vertical transport of
O3 from the lower stratosphere into the troposphere (K. Emma Know-
land et al., 2017; Sprenger, 2003). Moreover, tropopause folds are the
main mechanism of stratosphere-to-troposphere transport (STT) events
(Stohl, 2003) and lead to the downward transport of stratospheric
Os-rich air into the troposphere (Danielsen and Mohnen, 1977), which is
defined as stratospheric intrusion (SI). Therefore, SI is considered to be
one of the important processes that contribute to tropospheric ozone (A.
Ding & T. Wang, 2006; Mkololo et al., 2020). Occasionally, stratospheric
Og-rich air is transported deep down to the lower troposphere or even
the ground, resulting in surface ozone pollution (D. Akritidis et al., 2010;
Knowland et al., 2017; Lefohn et al., 2011; Lin et al., 2012).

Dust storms and stratospheric ozone intrusion both frequently occur
during spring in East Asia, with drastic change of surface PM;o and O3
recorded (Kim et al., 2002; Takemi, 2005; Tan et al., 2012). However,
few studies have focused the joint variations of such two important at-
mospheric compositions and explored the inherent relations in between.
In this study, we analyzed the influence of synoptic systems on the
vertical transport of dust particles and Os based on a strong dust storm in
2021 with intensive STE. A strong dust storm hit northern China on
March 15th’ 2021, the air quality in northern China was deteriorated,
with the average PM;( concentration in the early morning of the storm
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day above 3000 pg/m>. Notably, this event was accompanied by the
anomalous nocturnal O3 increase near the surface in northern China.
Here, by combining real-time observations and reanalysis data, we
investigate the synoptic causes of stratospheric Os intrusion during this
extreme dust storm event. Furthermore, statistical analysis of long-term
satellite retrievals and surface observation data indicate that the vertical
exchange of atmospheric compositions during strong dust storm is
frequently occurred, exerting great impact on atmospheric chemistry
and regional climate. The rest of this article is structured as follows. The
datasets used in this work are introduced in Section 2. Then, Section 3
contains the overview of the super dust storm and ozone pollution as
well as the long-term analysis of their joint variations. The impact of the
synoptic systems on vertical exchange of the dust particles and Og is also
included. Conclusions are summarized in Section 4.

2. Datasets
2.1. Observational data

2.1.1. Pollutant and meteorological observation

Ground-based pollutants concentration such as PMs 5, PM;p, O3 at
more than 1500 stations are openly available from the air monitoring
data center of the Ministry of Ecology and Environment of People’s
Republic of China. Such observational dataset with an hourly temporal
resolution covers most parts of China and provides a comprehensive
vision of air quality in China. Numerous existing studies have used this
dataset to analyze the spatial and temporal variations of air pollution
events (X. Huang et al., 2018; Z. Wang et al., 2020). In this study, this
dataset was applied to analyze the evolution of particulate matter and
O3 during the dust storm events.

The hourly ground-based meteorological condition datasets,
including horizontal visibility and wind speed and direction etc.,
archived at the US National Climate Data Center (NCDC) were collected
to identify the dust storm as well as analyze the synoptic causes of the
strong vertical exchange of dust particles and Os. The horizontal visi-
bility and the near-surface wind speed are often applied to identify and
classify dust storms (Cao et al., 2018; S. Wang et al., 2005), and thus we
used them to select strong dust storm days during the spring of
2013-2020. In various previous works, the definition of dust storms
showed some disparities. For strong dust storms in Asia that were con-
cerned in the study, Indoitu et al. (2012) defined it as wind speeds
reaching 10-14 m/s with the horizontal visibility lower than 1000 m. An
et al. (2018) defined a sand and dust storm event in Asia as at least three
standard stations recorded wind speeds greater than 3 m/s with the
horizontal visibility less than 1000 m. Since the regions we focused on
were located in northern China and southern Mongolia with little
anthropogenic activity, the horizontal visibility was mainly affected by
natural pollution sources such as dust aerosols rather than anthropo-
genic pollution sources. Meanwhile, the generally assumed threshold
wind speed of Asian dust suspension was 9 m/s (Kurosaki and Mikami,
2007). Consequently, based on the above researches, we defined the
strong dust storms days as at least three standard ground stations of
northern China and southern Mongolia recorded the near-surface wind
speed greater than 10 m/s and the horizontal visibility less than 1000 m
on the same day. For the radiosonde data, water vapor mixing ratio and
potential temperature profiles are measured twice a day (00:00 and
12:00 UTC) on primarily mandatory pressure levels, which are
employed to provide direct signal on vertical stratification.

2.1.2. Satellite observations

The Moderate resolution Imaging Spectroradiometer (MODIS) Aqua
satellite data were adopted in this study, which passed the study region
at 13:30 local time (LT) on March 15-16th, 2021. MODIS Level 2 Deep
Blue products of aerosols optical depth (AOD) at 550 nm with a hori-
zontal resolution of 10 km (MYDO04) were collected to show the spatial
distribution and the evolution of the dust aerosols. Spatio-temporal
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Fig. 1. Diurnal variations of (a, b) PMy s, (¢, d) PM;, and (e, f) O3 before the dust episode (Columnl, average from March 9-14th, 2021) and on the day of the dust

outburst (Column2, March 15th’ 2021) in northern China.

variations in the AOD using MODIS data had been widely employed to
study the dust storm events (Alam et al., 2014; Kaskaoutis et al., 2008).
Meanwhile, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO version 4) satellite were also used. Data from
CALIPSO Level 2 Vertical Feature Mask (VFM) was adopted to analyze
the vertical distribution and transport of dust aerosols during dust
storms (Jose et al., 2016; Tan et al., 2017).

2.2. Reanalysis data

2.2.1. CAMS global reanalysis data

The CAMS global reanalysis is the latest ECMWF (European Centre
for Medium-Range Weather Forecasts) global reanalysis of atmospheric
compositions for the period from 2003 onward. It was produced using
four-dimensional variation assimilation (4D-Var) in CY42R1 of
ECMWF’s Integrated Forecast System (IFS) (Inness et al., 2019). The
chemical mechanism of the IFS is an extended version of the Carbon
Bond 2005 (CB05) mechanism, which contains tropospheric chemistry
with 126 reactions (Flemming et al., 2015). Stratospheric ozone chem-
istry in IFS is parameterized by the Cariolle scheme (Cariolle and Déqueé,
1986; Cariolle and Teyssedre, 2007). Previous studies have shown that
such a combination makes a good representation of realistic tropo-
spheric and stratospheric O3 concentrations (Huijnen et al., 2020; Inness
et al, 2019). In addition, CAMS reanalysis verification reports
(https://atmosphere.copernicus.eu/eqa-reports-global-services)  indi-
cate that the stratospheric O3 in the CAMS reanalysis is within £5-10%

consistent with ozonesondes and satellite observations and does not
show any significant bias trends. Apart from Os, stratospheric ozone
tracer (Os3S) is also provided in CAMS, which is defined as ozone mixing
ratios in the stratosphere and is only subject to chemical loss and
deposition in the troposphere. The only source of O3S in the troposphere
is the influx from the stratosphere. Some previous studies have used the
O3S in CAMS to analyze the ozone variability in the atmosphere
(Dimitris Akritidis et al., 2021). Therefore, O3S applied in this study can
reasonably respresent stratospheric O3 entering the troposphere with
limited uncertainties. The CAMS reanalysis has a spatial resolution of
approximately 80 km (0.75° x 0.75° grid) with 60 hybrid
sigma-pressure (model) levels up to 0.1 hPa, and a temporal resolution
of 3 h.

2.2.2. ERAD5 reanalysis data

ERAS is the fifth generation ECMWF reanalysis for the global climate
and weather with a spatial resolution of 0.25° x 0.25° and a temporal
resolution of 1 h (Hoffmann et al., 2019). The ERA5 dataset can be well
used to analyze the synoptic weather in East Asia (L. Zhao et al., 2020).
The geopotential height at 925 hPa and 500 hPa, vertical velocity (») at
500 hPa, and wind fields provided by the ERA5S dataset were collected to
study the synoptic conditions during the dust storms. In addition, po-
tential vorticity (PV) was provided by the ERAS dataset to display the
spatial and temporal changes of PV during the event.
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Fig. 2. Spatial distribution of (a)PMy s, (b)PM;0, and (c)O3 at 06:00 LT on March 15th’ 2021 recorded by air quality monitoring stations. (d) Oz, PM3 5, and PM;o
concentrations in the early morning (00:00LT-08:00LT) before the dust episode (blue; the average from March 9-14th, 2021) and on the dust outburst day (red;
March 15th’ 2021). Note that the dots in the boxes represent the average values, the boxes and whiskers represent the 10th, 25th, 75th, and 90th percentiles
respectively. The stations enclosed by the black rectangle in (c) have been selected to perform analysis for the comparision in (d). (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)

3. Result
3.1. The overview of the super dust storm

The outbreak of the super dust episode in March 2021 was associated
with the development and movement of the Mongolian cyclone. The
high wind speeds resulting from the Mongolian cyclone usually tend to
promote dust emissions from the Gobi Desert (J.-T. Liu et al., 2004; M.
Liu et al.,, 2003). On March 14th’ 2021 the Mongolian cyclone over
eastern Mongolia followed by high-pressure system led to strong west-
erly winds over the Gobi Desert due to an intense pressure gradient
(Fig. S1b). The strong westerly wind speeds over the Gobi exceeded the
generally assumed dust-generating wind speeds threshold of Asia
(Kurosaki and Mikami, 2007), reaching over 20 m/s. Furthermore, ac-
cording to statistical results based on reanalysis data in the past decade,
the intense surface evaporation caused by warming air temperature
(Fig. S2) and deficient precipitation (Yin et al., 2021) led to a low
relative humidity in early March 2021 (Fig. S3). The lack of moisture
accelerated soil drying near dust sources and was conducive to dust
emissions. Therefore, combined with the strong westerly winds and the
low relative humidity near the dust sources, the dust storm broke out in
Mongolia on March 14th’ 2021. On the second day, the Mongolian
cyclone moved eastward to northeast China followed by a high-pressure
center over Mongolia, which resulted in northwesterly airflow between
the low-pressure and high-pressure centers (Fig. S1c). The northwesterly
wind promoted the transport of dust aerosols from the source regions to
Inner Mongolia. Consequently, the super dust storm affected northern
China from the early morning of March 15th and swept over the
downwind areas.

According to the air quality monitoring stations in northern China,
under the influence of the strong dust storm, the concentrations of

particulate matter increased sharply from the early morning of March
15th with the average PMjq concentration exceeding 1000 pg/m>
(Fig. 1d). Furthermore, both the PM;y and PM; 5 concentrations were
greatly enhanced on the dusty day compared to those before the dust
storm in northern China (Fig. 2d). Located close to the dust source re-
gion, Ordos and Hohhot witnessed the maximum hourly PM;, concen-
tration reached as high as 9985 pg/m°. As the dust plume moved
eastwardly, the Beijing-Tianjin-Hebei region was also greatly affected by
the super dust storm with maximum hourly PM; concentration reach-
ing 9753 pg/m° at Beijing, 3205 pg/m® at Shijiazhuang, and 2199 pg/m>
at Tianjin. Such high particle concentrations not only caused serious
deterioration of air quality, but also had substantial adverse effects on
atmospheric visibility. In Mongolia the severe dust storm was reported
to cause six deaths and left dozens missing, and hundreds of flights were
cancelled or grounded at Beijing airports as the horizontal visibility in
most of storm-affected areas was less than 1 km (https://www.bbc.
com/news/av/world-asia-china-56399268). Moreover, high AOD
values of more than 1.5 were captured by MODIS from Inner Mongolia
to Beijing-Tianjin-Hebei regions on March 15th’ 2021, which exhibited a
good correspondence with the spatial PM; distribution (Figs. 2b and
3a). In addition, the high AOD regions were accompanied by high
absorbing AOD (AAOD in Fig. 3c), indicating the great influence from
light-absorbing dust aerosols. At the same time, the near-surface Oj
concentration in northern China was also abnormally higher compared
to that before the dust episode (Fig. 1e and f, Fig. 2d). The near-surface
O3 concentration had a significant diurnal variation and reached the
diurnal peak at about 16:00LT before the episode (Fig. 1e). However,
during the dust storm, the diurnal variation of the near-surface Os
concentration disappeared and the highest concentration was detected
at 04:00LT (Fig. 1f). Such an abnormal ozone peak during the nighttime
would be further discussed in chapter 3.2. On March 16th’ 2021, as the
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Fig. 3. (a, b) Aerosol optical depth (AOD) and (c, d) absorbing aerosol optical depth (AAOD, derived from AOD*(1-SSA)) at 550 nm over eastern Asia retrieved by
MODIS satellite on March (a, ¢) 15th and (b, d) 16th, 2021. Missing values are shaded in grey.

Mongolian cyclone continued to move eastward (Fig. S1d), the dust
plume was transported to eastern China including Shangdong and
Henan, where the AOD value exceeded 1.0 (Fig. 3b).

3.2. Synoptic weather triggering vertical exchange of dust aerosols and
ozone

The upper-level trough related to the Mongolian cyclone constantly
developed and moved easterly during the super dust storm (Fig. 4a and
b). The center of the shallow trough was located in Mongolia at 14:00LT
on March 14th’ 2021 and moved to the border between eastern
Mongolia and northeast China at 02:00LT on the next day, when the
shallow trough developed into a deep trough. According to air mass
vertical movement (®) at 500 hPa, the upward motion of air with ver-
tical velocity of about —0.5 Pa/s existed in the east of the trough (Fig. 4a
and b). Therefore, as the trough developed, the ascending airflow in the
east of the trough could lift dust particles to the mid troposphere (Fig. 5a
and b). In order to better understand the vertical transport of dust par-
ticles, the vertical distribution of the dust plume captured by CALIPSO
on March 15th with its corresponding track was shown in Fig. 6. The
dust plume in the dust source region and nearby areas could be elevated
to about 8-12 km (Fig. 6a). The uplifted dust plume prone to long-range
transport could exert a critical impact on atmospheric radiation transfer
(J. Huang et al., 2008; Zhu et al., 2007).

Contrary to the ascending airflow in the east of the trough, the
descending airflow dominated in the west of the trough. Some previous
works have suggested that the downward motion behind the trough
could lead to the SI during the development and movement of the trough
(H. Wang et al., 2020; Y. Wang et al., 2020). The stratosphere has high
static stability and contains a larger potential vorticity (PV) compared
with the troposphere. Hence, PV could be used as an indicator to

distinguish stratospheric air masses from tropospheric ones, which is a
common approach to identify STE processes (Kumar et al., 2020; Luo
etal., 2013; Zhang et al., 2021). The dynamical tropopause is commonly
defined using a PV value of +2 PVU (1PVU = 10°° K-mz-sfl-kgfl) (Cui
et al., 2004; Holton et al., 1995; Newell et al., 1997). The spatial dis-
tribution of PV at 300 hPa was shown in Fig. 4c and d. Abnormally high
PV values at 300 hPa could be identified in northern Mongolia at
14:00LT on March 14th, which corresponded to the center of the
upper-level trough. Along with the trough development, the broader
region with high PV values could be seen over eastern Mongolia and
Inner Mongolia. It is suggested that the SI occurred simultaneously with
the downward motion behind the trough. In addition, the stratospheric
air mass is not only characterized by high PV but also by high O3, low
water vapor and high potential temperature (PT). Thus, the high PV
values at 300 hPa indicate that Os-rich, high-PT, and dry stratospheric
air were transported to the troposphere. To illustrate the SI clearly, the
spatial pattern of O3 at 300 hPa was analyzed (Fig. 7). The spatial dis-
tribution of high-Os at 300 hPa was very similar to that of high-PV,
confirming that the Ogs-rich stratospheric air was injected into the
upper troposphere due to the SI. To better illustrate the downward
transport of stratospheric ozone into the troposphere during the devel-
opment of the trough, the evolution of O3S was adopted (Fig. 5c and d).
As shown in Fig. 5¢ and d, SI could contribute an increase of 15 ppb to
near-surface O3 concentration at most. According to the vertical profile,
the water vapor mixing ratio (mass of water vapor/dry air mass) would
sharply drop (Seguel et al., 2018) and potential temperature would in-
crease near the tropopause due to SI (Fig. 8). Under the influence of the
SI, water vapor mixing ratio at Ulann-Baator at 12:00UTC on March
14th drastically decreased to 0.01 g/kg at about 500 hPa, much lower
than 0.06 g/kg at 00:00UTC on March 15th and the potential temper-
ature increased significantly near the tropopause (Fig. S4 and Fig. 8).
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Furthermore, the stratospheric O3 entering the upper troposphere
could be kept for a relatively long time (Young et al., 2013) and further
transported to the lower troposphere associated with downward mo-
tions of air behind the trough during the dust storm. Such a process
could raise the O3 concentration near the surface far beyond its coun-
terpart during normal days. Coincidentally, a soaring nocturnal ozone
was observed in northern China during the super dust storm (Fig. 2c).
The hourly concentration at many air quality monitoring stations of
northern China could exceed 40 ppb from 04:00 LT on March 15th,
much higher than the average O3 concentration of 21 ppb in the early
morning before the super dust storm. The maximum value of hourly O3
concentration at Wuhai and Ulanqab both reached 50 ppb in the early
morning of the dust storm day. Simultaneously, the humidity in tropo-
sphere near the dust sources decreased significantly (Fig. S5), suggesting
the intrusion of stratospheric dry air. Due to the absence of incident solar
radiation at night, the contribution of photochemical reactions to O3 was
expected to be insignificant. Given the negligible role of photochemical
production and the simultaneous low tropospheric humidity, the rapid
increase in the nocturnal near-surface ozone might be linked to SIL
Therefore, the intensive weather system associated with dust storms
may significantly affect the transport or diffusion of the atmospheric
compositions like dust particles and ozone.

3.3. Long-term evidence on intensified vertical exchange of O3 and
particles during dust storms

The aforementioned strong vertical transport of ozone and particles
during the dust storm is not occasional. Instead, such processes influ-
enced by similar synoptic conditions frequently occurred over northern
China during the past few years based on the comprehensive analysis of
the vertical structure of pollutants. As shown in Fig. 9, we compared the
surface Os concentration and the frequency of positive surface Og
anomaly on dust storm days and non-dust storm days in the spring of
2013-2020 in northern China. On dust storm days, not only the particle
concentration but also the surface O3 concentration is higher than that
on non-dust storm days (Fig. 9a). We also found that positive surface O3
anomaly frequency was 43% on non-dust storm days but 60% on dust
storm days (Fig. 9b). In addition, CAMS reanalysis showed that strato-
spheric O3 was transported downward and dust particles were uplifted
upward during dust storms (Fig. 10c and d).

Long-term average meteorological conditions of strong dust storm
events and spring climatology were displayed in Fig. 10 and Fig. S6,
respectively. Compared with the spring climatology, the stronger low-
pressure center was located over Mongolia and Inner Mongolia during
the dust storms because the dust storms in Mongolia in spring were often
caused by cyclones and cold fronts (Husar et al., 2001; Qian et al., 2002).
The high-pressure anomaly in the west accompanied with the
low-pressure anomaly in the east during the dust storms resulted in
westerly airflow anomalies in between (Fig. 10a). As shown in Figs. S6a
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and S6b, the westerly airflow frequently over dust sources intensified
wind speeds during the spring, resulting in the outbreak of dust storms.
In addition, the strong ascending airflow anomalies were found over the
stronger low-pressure center during the dust storms (Fig. 10b). Due to
such upward motions, dust particles could be uplifted to the upper
troposphere, which caused the average dust aerosols concentration at
400 hPa to reach 10 pg/m? in the downstream areas of dust sources
(110°E-120°E) (Fig. 10c). According to the statistical results of CALIPSO
data over Inner Mongolia, dust particles were usually concentrated

below 4 km but the probability of dust plumes being transported to 8-12
km could also reach about 50% (Fig. S7).

Descending airflow anomalies and positive PV anomalies are indic-
ative of SI behind low-pressure anomalies (Fig. 10b). Therefore, Os-rich
stratospheric air would be transported deep down into the troposphere
as the SI developed, leading to a high anomaly O3 of 6 ppb near the
surface over the source region during spring dust storms in the past few
years. This phenomenon indicated that the strong dust storm events in
spring could be accompanied by O3 pollution caused by STE process. As
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shown in Figs. 1 and 9, the surface O3 concentration during dust storms
was higher than that during non-dust storm periods. We also compared
the stratosphere-to-troposphere transport in the occurrence of positive
surface O3 anomalies during non-dust storm and dust storm in Fig. S8.
There is a high PV center in north of China when positive surface O3
anomalies occur during dust storms, yet no such signal was found during
non-dust storms (Figs. S8a and S8b). In addition, compared with spring
climatology, the positive surface O3 anomaly was accompanied by a
strong positive O3S anomaly downward transport (90°E~120°E) during
dust storms, while the downward transport was absent during non-dust
storms (Figs. S8e and S8f). Therefore, the positive surface O3 anomalies
during dust storms are closely associated with STE. In contrast, the
surface O3 anomalies during non-dust storms are generally caused by
other reasons, such as photochemical production. The ascending airflow
in the east could transport the low-level air upward, which could
decrease the O3 concentration in the lower stratosphere.

4. Conclusions

In this study, combining observations and reanalysis data, the syn-
optic systems associated with the dust storm on March 15th’ 2021 and its
impact on the vertical structure of pollutants are comprehensively
analyzed. The dust storm originated from Mongolia and was influenced
by the Mongolian cyclone. The strong westerly airflow caused the dust
outbreak and transported dust particles to northern China during the
development of the Mongolian cyclone. The concentration of PM;q
observed by air quality monitoring stations in northern China could
reach 1000 pg/m>, and the AOD captured by MODIS could reach more
than 1.5. Such strong dust storms disrupted economic and social activ-
ities in numerous ways, including worsening air quality that endangered
human health and reducing visibility that led to disruptions in the
transportation. Under the influence of the upward motions of air related
to the trough, dust particles near the surface were uplifted to the upper
troposphere. At the same time, under the influence of the downward
motions of air related to the trough, the dust storm event was accom-
panied by STE. Hence, without photochemical reaction, the average O3

concentration near the surface in northern China reached 35 ppb in the
early morning of March 15th, far beyond the average nocturnal Os
concentration of normal days.

Furthermore, it is observed that the vertical transport of ozone and
particles frequently occurs during spring dust storms in East Asia. Ac-
cording to the statistical results from 2013 to 2020, the occurrence of
strong dust storms in northern China is usually related to the strong low-
pressure system near the surface. The high winds related to the low-
pressure can lead to the outbreak of dust storms and convey dust par-
ticles to the downstream regions. In addition, the upward motions of air
over low-pressure systems uplift dust particles to about 400 hPa. The
simultaneous downward motions of air behind low-pressure systems
lead to SI, resulting in elevated surface Os pollution along with dust
storms events. The frequency of positive surface O3 anomalies during
dust storms reach 60%. This study reveals that cyclones can play an
important role in both dust storms and STE process, influencing the
vertical distribution of ozone and dust particles. Considering the vital
role of O3 in atmospheric oxidation and the substantial effect of dust on
both long- and short-wave radiation, such an intense vertical exchange
of ozone and dust particles is expected to have a great perturbation in
atmospheric chemistry and regional climate. Under the influence of
global climate change, mid-latitude synoptic systems could be more
active, leading to more intensive dust storms and STE processes that
drastically deteriorate air quality. Therefore, early forecasting and
warning systems should be further developed to mitigate impacts of such
hazardous events on society.
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